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ABSTRACT 
 

Unrelated datasets from biology, economics, computer science, and many other 
disciplines follow power law distributions, characterized by a straight line in the log-log 
rank-frequency plot. This universality, along with the tempting prospect of a common 
underlying generative process, has attracted significant research interest. Upon closer 
inspection, many of these datasets show slight or pronounced curvature. In light of this, 
several alternative distributions have been proposed in the literature. The lure of the 
power law, however, is extremely strong, and these alternatives are rarely fitted. This 
paper reviews these alternative distributions and fits them to a standardized collection of 
power law datasets. The practicalities of fitting these distributions are discussed. The 
hope is that presenting these distributions in a user-friendly and systematic format and 
testing them against some canonical datasets will facilitate their use within the power law 
literature. 
 
Keywords: Power law distribution, DGX, lognormal distribution, maximum likelihood 
estimation, rank-frequency plot 

 
 

INTRODUCTION 
 

Many datasets that are described as following a power law (i.e., having a linear 
probability distribution in log-log coordinates) do, in fact, show some inconvenient curvature. 
There are several alternative distributions that allow for such curvature in the literature; however, 
it is not straightforward for researchers to utilize these because they do not share consistent 
notation or statistical methodology. Ideally, we should have access to a readily available toolkit 
of skew distributions that are straightforward to use and interpret and that can be easily 
compared with each other. In this paper, I undertake an informal survey of some of these skew 
distributions that I hope may contribute to the development of such a toolkit. This work is at an 
early stage, so references should be made to other sources before using any result included here. 
I first define the terminology and notation used throughout this paper. I then describe the 
statistical distributions, their functional forms, and how their parameters may be estimated from 
sample data. I work through the Beowulf dataset in detail as an example. This is followed by 
summary results for several datasets and finally by concluding remarks. 
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NOTATION AND TERMINOLOGY 
 

Observations x1,…,xn are sorted from largest to smallest so that the subscript i 
corresponds to the rank of the observation, the largest observation being ranked first and the 
smallest n’th. The value of an observation is known as a frequency. The origin of this unfortunate 
convention is that in many cases, particularly in the early terminology-formation years, the 
values being studied were frequencies of occurrence. For instance, our first sample dataset will 
be one studied by Zipf: the frequency of words appearing in the text of Beowulf. Our vector of 
observations is also converted into the form f1,…,fm (frequency) and c1,…,cm (count), where ci 
represents the count of observations equal to fi, such that the sample size . That is, if 
our original vector of observations is (30, 5, 3, 2, 2, 1, 1, 1), then we will have a frequency vector 
(30, 5, 3, 2, 1), with each value appearing once, and a count vector (1, 1, 1, 2, 3). Summing the 
values in count (1 + 1 + 1 + 2 + 3 = 7) tells the total sample size. The use of “count” and 
“frequency” in this very specific manner is problematical, since these words are interchangeable 
in everyday speech. If you are familiar with using the function count ( ) in a summary 
calculation, this should help keep you oriented correctly. In general, it is advisable to read any 
use of this terminology very carefully to make sure of the author’s intended meaning.1
 
 

THE DISTRIBUTIONS 
 
Power Law 
 

The probability density function (PDF) of the power law distribution is given by: 
 
 f(x) ∝ x–(k+1) , (1) 
 
where the parameter k determines the steepness of the slope. The probability mass function in the 
upper tail (PMUF) is 
 
 F (x) ∝ x–k . (2) 
 

Taking logarithms of y = x−k gives log y = –k log x, which illustrates the trademark 
power law linear relationship in log-log coordinates (Adamic 2005). In principle, one could 
determine the distribution parameter k either by fitting a straight line to PDF data as given by 
Equation 1 or to PMUF data as given by Equation 2. In practice, the PDF does not yield reliable 
results, so the PMUF is used. 
 

The power law can also be fit by using rank-frequency data. In a log-log rank-frequency 
plot, the parameter k is derived from the slope –b by k = 1/b. In the traditional Zipf distribution, 
both b and k are equal to 1 (Adamic 2005). Note that there is no intercept term in the PMUF 
regression, since the line fitted must pass through (1,1), which is (0,0) in the log-log plot. For 
rank-frequency data, we fit a straight line with an arbitrary intercept, the fitted intercept giving us 
the scale of the object with rank 1. 
 

                                                 
1 I strongly considered referring to frequency data by another name. However, the term “rank-frequency plot” is 

widely used, so it was preferable to explain and use the terminology. 
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Unfortunately, all of the above apply only to continuous data. Our data are discrete; in fact, in the 
Beowulf example and many others, the data take only integer values. Following the example of 
Bi et al. (2001), we can derive the discrete probability function (point-mass function) as follows: 
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where  is the Riemann zeta function (Weisstein 2005). We will use maximum 
likelihood to determine the distribution parameter k. When independent, identically distributed 
data are assumed, the likelihood function is 
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The log likelihood function has a simpler form: 
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or in terms of count-frequency data: 
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Lognormal/DGX 
 

The most well-known alternative distribution is the lognormal. While the power law has a 
straight line in log-log coordinates, the lognormal is parabolic. The PDF is 
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The discretized form of the lognormal distribution, known as the discrete Gaussian exponential 
(DGX) (Bi et al. 2001), has this PDF: 
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where A is a normalization constant given by: 
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When independent, identically distributed data are assumed, the log likelihood function is 
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By substituting count and frequency data, the log likelihood expression becomes 
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The DGX reduces to the power law as μ→ −∞. 
 
 
Stretched Exponential 
 

The stretched exponential distribution is a generalization of the exponential distribution. 
The PDF is defined as 
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with the cumulative distribution function (CDF) being 
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for c ≤ 1. When c = 1, this reduces to the exponential distribution (Laherrère and Sornette 1998). 
 

The stretched exponential produces a straight line when the natural logarithm of the rank 
is plotted against observed values raised to the power c: 
 
 . (15) biaxc
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The three parameters of the distribution are a, b, and c, with cax
1

0 = .  
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The authors provide no algorithm for fitting the stretched exponential. Thus far, the 
simplest method I have found is one of brute force. Allow c to take each of the values in (0.001, 
0.002, …, 0.999, 1.000), or the required search precision, and proceed to fit the linear model 
specified in Equation 15 to the vector of observations x1

c,…,xn
c. Choose the value of c that 

corresponds to the highest regression R2, and a and b are then obtained from the corresponding 
linear model. 
 
 
Parabolic Fractal 
 

The parabolic fractal is another second-order polynomial extension of the linear power 
law, but while the lognormal is a parabola in log-log frequency-count, the parabolic fractal is a 
parabola in log-log rank-frequency: 
 
 ( )2

1 loglogloglog ibiaxxi −−= . (16) 
 
When b = 0, this reduces to the power law. Since a concave parabola has a maximum value, the 
theoretical maximum observation (regardless of sample size) can be calculated as follows: 
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The parabolic fractal can be fit by using linear regression on log i and (log i)2. 
 

A future task is to develop discretized versions of both the stretched exponential and the 
parabolic fractal so that they can be directly compared with the discrete power law and DGX. 
 
 
Other Distributions 
 

This is not an exhaustive list, and new distributions are being developed all the time, such 
as the double Pareto, which has two straight-line segments connected at a transition point 
(Mitzenmacher 2003) rather than a single straight line as in the standard Pareto/power law. 
 
 

SAMPLE DATASET 
 

Beowulf, one of the earliest surviving poems in English, was a source text for Zipf’s 
study of the frequency with which words appear in the written language (Zipf 1965). The text of 
Beowulf was obtained from Project Gutenberg, and a word count list (concordance) was 
prepared, the start of which is shown in Table 1. 
 

Table 2 has word frequencies in the first column and the number/count of words that 
appear with said frequency in the second column. There are 1,611 words that appear only once in 
the text, and the most common word (THE) appears 1,587 times. Rank is also given for the 
highest-ranked observations: 
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TABLE 1  Concordance 
of Beowulf 

 
Frequency Word 

  
1 ABANDONED 
1 ABEL 
2 ABIDE 
1 ABJECT 
3 ABLE 
4 ABODE 
6 ABOUT 
2 ABOVE 
1 ABROAD 
2 ACCURSED 

 
 

TABLE 2  Frequency, count, and rank 
data for Beowulf 

 
Frequency 

 
Count 

 
Rank 

 
Word 

    
1 1,611   
2 548   
3 293   
4 180   
5 115   
6 93   
7 61   
8 49   

… …   
163 1 8 HIM 
222 1 7 FOR 
229 1 6 WAS 
276 1 5 WITH 
321 1 4 THAT 
408 1 3 HIS 
636 1 2 AND 
1587 1 1 THE 
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A natural first step in our exploration is to graph the count-frequency data in both linear 
and logarithmic scale (Figure 1). The log-log graph on the right suggests a linear relationship, 
albeit with rather messy data for high-frequency words. Figure 2 shows that this plot is not 
suitable for curve fitting. Although the values obtained for k will not be correct for our discrete 
data, by way of illustration, Figure 3 shows the CDF and rank-frequency plots. 
 
 

 

FIGURE 1  Count and frequency data in linear and logarithmic scale 
 
 

 

FIGURE 2  Fitting power law slope on  
count-frequency plot 
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FIGURE 3  CDF and rank-frequency plots 
 
 

We can see some evidence of curvature in the CDF plot, and even more in the rank-
frequency plot. We will now calculate the power law distribution parameter k and the DGX 
distribution parameters μ and σ by maximizing the respective log likelihood functions. To 
compare these two distributions, we can define an error statistic (denoted ERR), which is a 
straightforward extension of the mean squared error (MSE): 
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We see that the DGX has a much lower error statistic; it is 12, compared with 358 for the power 
law. Since the DGX is, in effect, a generalization of the power law, this is to be expected. 
 

Moving on to the stretched exponential and parabolic fractal (Figure 4), we will be able 
to compare them with each other, but not, for now, with the discrete power law and DGX 
(Figure 5). We can define an error statistic for rank-frequency data by 
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where F(i) is the predicted frequency for the observation of rank i. 
 

For this dataset, the stretched exponential and parabolic fractal give similarly shaped 
fitted curves and similar error statistics. We see that both curves miss the handful of highest-
ranked observations by a considerable amount. This may be a feature of the rank-frequency plot, 
which has n data points and thus places more emphasis on common, small events; in the PDF 
plot, these small events are aggregated together. 
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FIGURE 4  Stretched exponential and parabolic fractal 
 

 

 

FIGURE 5  Discrete power law and DGX 
 
 

OTHER DATASETS 
 
 
Genera and Species of Snake 
 

The number of species in a genus, for a family of plants or animals, has a skew 
distribution. I present two datasets here. One is from Yule (1925), which was quoted from an 
earlier work by Willis, which collated the data from the Catalogue of the Snakes in the British 
Museum by G.A. Boulenger, published in 1893 (Figure 6). The other is an updated version with 
2005 data (Uetz and Heidelberg 2005) (Figure 7). There are 293 genera and 1,475 species in the 
1893 dataset, and 463 genera and 3,002 species in the 2005 dataset. 
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FIGURE 6  Year 1893 snake data 
 
 

 

FIGURE 7  Year 2005 snake data 
 
 

For both 2005 and 1893 data, we see that the DGX has a lower error statistic, as we 
expect. The stretched exponential is also a better fit in both cases, and in the 2005 data, it seems 
to match even the largest events. The parabolic fractal, in addition to having a poor fit, also has a 
positive coefficient for log(i) in the 2005 data, which violates its specification. 
 
 
U.S. Cities 
 

Here we look at the distributions of population in U.S. cities with more than 
100,000 people. The DGX again outperforms the power law. The parabolic fractal in this 
instance has a slightly lower error statistic than the stretched exponential, but this is probably not 
a significant difference (Figure 8). 
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FIGURE 8  U.S. city sizes 
 
 
Isle of Man Surnames 
 

The DGX has an unfortunate quirk that means that for certain data, the normalization 
constant takes a very long time to converge. This means that the computations can be 
prohibitively time-consuming. Hence, for data pertaining to the distribution surnames of families 
living in the Isle of Man, we show only the stretched exponential and parabolic fractal (Figure 9). 
Again, the parabolic fractal has a negative coefficient for one of its terms, which is not valid 
according to its definition. Visually, the stretched exponential seems to fit both extremes, but it 
misses the curvature in the middle of this dataset.  
 
 

DISCUSSION AND CONCLUSIONS 
 

With so much academic interest in power laws, much more research is needed on the 
probability distributions that describe skew data, including the development of standardized 
criteria for discriminating between alternative distributions. Many of the conventional tools are 
based on a distribution having a finite mean or following a Gaussian error distribution; thus, they 
are not helpful for dealing with skew data. Because this research interest is interdisciplinary, 
consistent terminology and notation are all the more crucial. Distributions tend to be invented in 
response to a particular research problem and so have “baggage” from the academic or industrial 
realm in which they arose.  
 

The DGX and discrete power law were fit by using maximum likelihood, and their 
distribution functions explicitly are acknowledged the discrete nature of the data. The stretched 
exponential and parabolic fractal were fit by using linear regression, implicitly assuming 
continuous data, and they were fit in the rank-frequency plot rather than a frequency-count or 
frequency-PDF plot. It is not clear at this point whether these two approaches will turn out to be 
complementary, each highlighting different and useful aspects of the data, or whether one will 
emerge to be “correct.” 
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FIGURE 9  Distribution of surnames in  
the Isle of Man 

 
 
There may or may not be a “best” alternative distribution that is a better fit for all or 

nearly all datasets. For the datasets considered here, the DGX was a better fit than the discrete 
power law, which was expected, since the DGX is a generalization of the power law. The 
parabolic fractal proved problematic, since it should be strictly decreasing, but for several 
datasets, the fit produced by linear regression led to negative values for the “a” coefficient. The 
stretched exponential did not have this difficulty, and it had a better or comparable error statistic 
to the parabolic fractal. 
 

I am looking forward to continuing this work and incorporating additional distributions 
and datasets. There are plenty of practical and theoretical challenges involved in working with 
skew distributions, and the development of a statistical methodology will be a vital component of 
research in the years to come.  
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